Название: Клиническая оценка результатов лабораторных исследований - Учебное пособие

Жанр: Медицина

Рейтинг:

Просмотров: 1454

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |



ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ЭПИФИЗА

Эпифиз (шишковидная железа) является неотделимой частью центральной системы нейрогуморальной регуляции организма, его называют нейроэндокринным передатчиком. Функции эпифиза в настоящее время мало изучены. Однако известно, что эпифизу принадлежит ведущая роль в передаче информации на все жизнеобеспечивающие системы организма о смене дня и ночи, а также в организации сезонных и циркадных ритмов и регуляции репродуктивных функций. Контакты между гипоталамусом и эпифизом, видимо, осуществляются гуморальным путем. Инкреты эпифиза (мелатонин и серотонин) оказывают инги-бирующее влияние на выработку рилизинг-гормонов в крупноклеточных ядрах гипоталамуса. Эпифиз путем выработки мелатонина подавляет секрецию Л Г, а серотинин — ФСГ, блокируя образование соответствующих рилизинг-гормонов [Arendt J., 1995].

Нарушение гормональных функций эпифиза проявляется гипопинеализмом, гиперпи-неализмом и диспинеализмом.

Для оценки функционального состояния эпифиза в настоящее время необходимо определение мелатонина и серотонина в крови и продуктов метаболизма мелатонина (мелатонина сульфата) в моче.

Мелатонин в сыворотке

Содержание мелатонина в сыворотке утром в норме 20 нг/мл, вечером 55 нг/мл.; в слюне — 30 % от его уровня в сыворотке.

Мелатонин, или ^-ацетил-5-метокси-триптамин — главный гормон эпифиза. Он синтезируется в эпифизе из промежуточного метаболита серотонина — N-ацетилсеротонина. Мелатонин секретируется в кровь эпифизом. Уровень мелатонина в крови имеет значительные индивидуальные колебания, самый высокий уровень в крови ночью. Его характерный ночной пик кодирует информацию о времени суток и продолжительности ночи. Регуляция секреции мелатонина находится под контролем главным образом симпатической нервной системы, которая оказывает свое регулирующее влияние посредством норадреналина. Участки, обладающие высокой связывающей способностью и сродством по отношению к мелато-нину, имеются в гипоталамусе человека. Период полураспада мелатонина составляет 47 мин. Большая часть мелатонина метаболизируется в печени до 6-гидроксимелатонина. В виде 6-сульфоксимелатонина (мелатонина сульфат) он выделяется с мочой. Мелатонин является антагонистом меланоцитстимулирующего гормона гипофиза в отношении меланофоров — клеток, обусловливающих пигментацию кожного покрова.

В настоящее время физиологическая и патофизиологическая роль мелатонина активно изучается. Нарушение уровня мелатонина в крови соответствует расстройствам сна, депрессии, шизофрении, гипоталамической аменорее и некоторым видам злокачественных новообразований.

Преждевременное половое созревание может быть обусловлено наличием опухоли в эпифизе. Если опухоль развивается из энзимоактивных элементов паренхимы, то преобладают явления гиперпинеализма или диспинеализма. Недостаточность секреции мелатонина эпифизом приводит к повышенной выработке ФСГ и, следовательно, к персистенции фолликула, поликистозу яичников, общей гиперэстрогении. На этом фоне могут развиваться: фиброматоз матки, дисфункциональные маточные кровотечения. Гиперфункция эпифиза, наоборот, индуцирует гипоэстрогению, половую фригидность.

Мелатонину отводится важная роль в патогенезе ановуляторных маточных кровотечений. Таким больным показано исследование экскреции мелатонина с мочой на про-

455

тяжении всего менструального цикла. В норме на протяжении фолликулиновой фазы цикла показатели экскреции составляют 5—9 мкг/сут, в фазу овуляции экскреция мела-тонина снижается до 5,3±0,4 мкг/сут, а в лютеиновой фазе количество экскретируемого мелатонина увеличивается. У больных с дисфункциональными маточными кровотечениями экскреция мелатонина с мочой возрастает до 11,8±2,8 мкг/сут [Серов В.Н. и др., 1995].

Повышение уровня мелатонина в крови и его экскреции с мочой наблюдается у больных с маниакальными состояниями.

Снижение уровня мелатонина в крови характерно для больных пеллагрой, нарушениями обмена триптофана.

ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ

ГОРМОНАЛЬНЫХ СИСТЕМ РЕГУЛЯЦИИ

ОБМЕНА КАЛЬЦИЯ

Основная масса имеющегося в организме кальция находится в костях. Длительная недостаточность кальция вызывает заболевания костной ткани. Фракция внекостного кальция составляет всего 1 % от его общего содержания в организме, вместе с тем она очень важна из-за ее воздействия на нервно-мышечную возбудимость и сердечную мышцу. Гомеостаз кальция в организме обеспечивается системой паратиреоидный гормон (ПТГ) — кальцито-нин — витамин D. Основная функция всех этих гормонов — регуляция движения Са2+ и фосфатов в организме и поддержание постоянства концентрации Са2+ в крови.

Нарушения метаболизма кальция проявляются гиперкальциемией или гипокальци-емией, отрицательным или положительным балансом кальция. Среди нарушений обмена кальция различают заболевания, при которых концентрация ПТГ повышена (секреция ПТГ либо неадекватна и вызывает повышение уровня кальция в крови, либо адекватна и сочетается с соответствующим нижней границе нормы или низким уровнем кальция в плазме) или понижена (заболевания паращитовидных желез, сопровождающиеся снижением концентрации кальция в крови, а также случаи адекватного угнетения секреции ПТГ под влиянием высоких концентраций кальция в крови, не обусловленных аномальными концентрациями ПТГ). В более упрощенной форме наиболее частой причиной гиперкальциемии является ги-перпаратиреоз, а гипокальциемии — гипопаратиреоз.

Лабораторная диагностика нарушений обмена кальция основывается на проведении следующих групп тестов:

исследование содержания общего и ионизированного кальция, неорганических фос фатов в крови и экскреции их с мочой. Исследование необходимо проводить повтор но на свободной диете и на диете с содержанием кальция 10 мг/кг массы тела паци ента и фосфора 0,9—1,5 г;

исследование содержания в крови магния, натрия, калия, альбумина, КОС, т.е. пара метров, влияющих на содержание общего и ионизированного кальция в крови или характеризующих его метаболизм;

определение  в  крови   концентрации  гормонов,   регулирующих  гомеостаз  кальция (ПТГ, КТ, кальцитриол);

исследование биохимических маркеров метаболизма и резорбции костной ткани (ще лочная фосфатаза, остеокальцин, гидроксипролин, дезоксипиридинолин);

проведение функциональных тестов.

Первые две группы тестов рассмотрены в предыдущих главах книги. В этой главе будут рассмотрены третья и четвертая группы тестов.

Гормоны, регулирующие гомеостаз кальция Параттормон (ПТГ) в сыворотке

Уровень ПТГ в сыворотке у взрослых в норме 8—24 нг/л (РИА N-концевой ПТГ).

ПТГ — полипептид, состоящий из 84 аминокислотных остатков, является продуктом жизнедеятельности паращитовидных желез, где он синтезируется в виде высокомолекулярного прогормона. Прогормон после выхода из клеток подвергается протеолизу с образовани-

456

ем ПТГ. Продуцирование, секрецию и гидролитическое расщепление ПТГ регулирует концентрация Са2+ в крови. Снижение ее приводит к стимуляции синтеза и высвобождению гормона, а понижение вызывает обратный эффект. ПТГ повышает концентрацию Са2+ и фосфатов в крови. ПТГ действует на остеобласты в плане повышения деминерализации костей. Активен не только сам гормон, но и его аминоконцевой пептид. Он возникает при гидролизе ПТГ в гепатоцитах и почках в тем большем количестве, чем ниже концентрация Са2+ в крови. В остеокластах активируются ферменты, разрушающие промежуточное вещество кости, а в клетках проксимальных канальцев почек ингибируется обратная реабсорбция фосфатов. В кишечнике усиливается всасывание кальция.

В патогенезе гиперпаратиреоза ведущую роль играют нарушения кальций-фосфорного обмена вследствие избыточной продукции ПТГ. Органами-мишенями ПТГ являются кости, почки и тонкая кишка. При действии ПТГ на костную ткань усиливается резорбция кости за счет активации остеобластов. Образование новой кости отстает от ее рассасывания, что ведет к генерализованному остеопорозу, вымыванию кальция из костного депо и гиперкальциемии. Остеобласты активируют синтез коллагена. Разрушение избыточного количества коллагена нейтральными протеазами приводит к появлению высоких концентраций пептидов, содержащих оксипролин в крови, и повышает их выведение с мочой. Влияние ПТГ на почки проявляется фосфатурией, обусловленной снижением реабсорбции фосфата в проксимальных канальцах. ПТГ стимулирует образование кальцитриола, который усиливает всасывание кальция в тонкой кишке. Важную роль в возникновении язвенного поражения желудка, двенадцатиперстной кишки и тонкой кишки играет гиперкаль-циемия, которая вызывает кальцификацию сосудов, и прямое действие ПТГ на слизистую оболочку желудочно-кишечного тракта.

Первичный гиперпаратиреоз может быть обусловлен либо аденомой (аденомами, блас-томой) паращитовидных желез (в 85 % случаев), либо их первичной гиперплазией [Му-сил Я., 1986]. Опухоли паращитовидных желез почти всегда доброкачественны. Лишь в редких случаях первичный гиперпаратиреоз вызван карциномой паращитовидных желез. С возрастом частота случаев аденомы паращитовидных желез увеличивается. Первичный гиперпаратиреоз характеризуется повышением ПТГ (в 2—20 раз), гиперкальциемией при нормальном или сниженном уровне фосфатов в крови. Если развивается поражение почек, обычно вследствие гиперкальциемии, то уровни фосфатов и кальция имеют тенденцию к нормализации: фосфаты из-за неспособности почек отвечать на фосфатурическое воздействие ПТГ, а кальций из-за понижения его концентрации в крови при заболеваниях почек. На этой стадии заболевания диагностика может быть очень затруднена. Содержание каль-цитонина в крови повышено.

Вторичный гиперпаратиреоз представляет собой компенсаторную гиперфункцию и гиперплазию паращитовидных желез, развивающуюся при длительной гиперфосфатемии и ги-покальциемии, обусловленной хронической почечной недостаточностью, дефицитом витамина D и кальция, синдромом мальабсорбции. При вторичном гиперпаратиреозе происходит стимуляция продуцирования ПТГ в паращитовидных железах в ответ на снижение концентрации ионизированного кальция в крови. Эта секреция ПТГ является адекватной в том смысле, что она необходима для нормализации содержания ионизированного кальция. Если этот эффект достигнут, то стимуляция секреции ПТГ прекращается. В связи с этим если функции механизма обратной связи регуляции ПТГ не нарушены, то любой фактор, способствующий снижению ионизированного кальция в крови, может вызывать вторичный гиперпаратиреоз. При вторичном гиперпаратиреозе концентрация кальция в крови либо низкая (если повышенное продуцирование ПТГ оказывается неадекватным для коррекции гипо-кальциемии), либо находится в пределах нормы, но никогда не бывает повышенной. Концентрация кальцитонина в крови снижена.

Гиперпаратиреоз при эктопической секреции ПТГ (псевдогиперпаратиреоз) возникает в тех случаях, когда злокачественные опухоли неэндокринных тканей продуцируют чуждые им пептиды, одним из которых может быть ПТГ. Наиболее часто эктопическая секреция ПТГ встречается при раке почки и бронхогенном раке.

Множественный эндокринный адематоз I и II типов (множественные эндокринные нео-плазии) относятся к редко встречающейся патологии. Они характеризуются тем, что две эндокринные железы или более секретируют обычно из аденом неадекватное количество гормонов. Различают несколько групп множественных эндокринных неоплазий (МЭН). При МЭН I в патологический процесс могут быть вовлечены (две или более) следующие эндокринные ткани: паращитовидные железы (гиперплазия или аденома), клетки островков поджелудочной железы (гастриномы, инсулиномы), передняя доля гипофиза, кора надпочечни-

457

ков, щитовидная железа. МЭН II включает медуллярную карциному щитовидной железы, феохромоцитому, аденому или карциному паращитовидных желез (более подробно о МЭН см. «Инкреторная функция желудочно-кишечного тракта»).

Содержание ПТГ в крови может повышаться при D-гиповитаминозе, при энтерогенной тетании и тетании беременных. У большинства больных с метастазами в кости определяют гиперкальциемию и повышенное содержание ПТГ в крови.

Гипопаратиреоз — недостаточность функции паращитовидных желез, характеризующаяся сниженной продукцией ПТГ, что способствует нарушению обмена кальция и фосфора. Недостаток ПТГ приводит к повышению уровня фосфора в крови (за счет снижения почечного эффекта ПТГ), а также к гипокальциемии, обусловленной снижением всасывания кальция в кишечнике, уменьшением его мобилизации из костей и недостаточной реабсорбцией кальция в почечных канальцах. Кальцитонин в крови снижен. В патогенезе гипокальциемии имеет значение уменьшение синтеза в почках кальцитриола. Наиболее часто гипотиреоз обусловлен хирургическим повреждением либо непосредственно паращитовидных желез, либо их кровоснабжения при частичной тиреоидэктомии (во время тотальной тиреоидэктомии и ларингэктомии обычно удаляют паращитовидные железы). Вместе с тем необходимо помнить, что отмечаемая после тиреоидэктомии гипокальциемия часто обусловлена не повреждением паращитовидных желез, а послеоперационной гипоальбуминемией (поэтому лучше исследовать ионизированный кальций) и быстрым поступлением кальция в обедненную им костную ткань. Ранние признаки послеоперационной недостаточности паращитовидных желез могут быть преходящими, но если низкая концентрация кальция не нормализуется несколько недель, необходимо лечение. Выявляемое при исследованиях снижение ПТГ в крови может сопровождаться повышением концентрации кальция. Причинами гипер-кальциемии при сниженной концентрации ПТГ являются избыток витамина D, идиопати-ческая гиперкальциемия у детей, саркоидоз, очень тяжелый тиреотоксикоз, некоторые случаи миеломы.

Псевдогипопаратиреоз — синдром Олбрайта, наследственная остеодистрофия — относится к редкому врожденному патологическому состоянию, при котором нарушен ответ на воздействие ПТГ как почек, так и костной ткани. Заболевание обусловлено наследственным дефектом рецепторов тканей-мишеней к действию ПТГ. Ни эндогенный, ни экзогенный ПТГ не повышают уровня кальция в сыворотке крови и не снижают концентрацию фосфора. В большинстве случаев псевдогипопаратиреоза введение таким больным ПТГ сопровождается неадекватным увеличением концентрации цАМФ в крови и моче. При псев-догипопаратиреозе I типа ПТГ не способен активировать аденилатциклазную систему, в результате чего не образуется цАМФ, главной задачей которого является реализация эффекта ПТГ в клетке. В основе дефекта лежит сниженная активность белка, связывающего гуаниновый нуклеотид (фрагмент G). При псевдогипопаратиреозе II типа ПТГ нормально активирует внутриклеточный цАМФ, экскреция которого с мочой повышена как в базаль-ном состоянии, так и после стимуляции. Полагают, что в этом случае дефект состоит в неспособности клеток-мишеней отвечать на сигнал внутриклеточного цАМФ. У некоторых больных псевдогипопаратиреозом резистентность к ПТГ ограничена почками, тогда как кости нормально реагируют на повышение уровня гормона. Этот вариант заболевания иногда называют псевдогипогиперпаратиреозом. В большинстве случаев псевдогипопаратиреоза введение таким больным ПТГ сопровождается неадекватным увеличением концентрации цАМФ в крови и моче.

Кальцитриол [1,25(OH)2D3] в сыворотке

Уровень кальцитриола в сыворотке у взрослых в норме 25—45 пг/мл (60—108 пмоль/л).

Витамин D3 (холекальциферол) образуется в коже из 7-дегидрохолестерола под влиянием солнечного света или поступает в организм с пищей. Синтезированный и поступивший витамин D3 транспортируется кровью в печень, где в митохондриях превращается в 25-гидроксивитамин {25(OH)D3}. Этот промежуточный продукт превращается или в 25(OH)2D3 или в 24,25(OH)2D3. Кальцитриол 1,25(OH)2D3 образуется в митохондриях клеток почек под действием 1-гидроксилазы и наиболее активная форма витамина D3. По своему действию 1,25(OH)2D3 является гормоном и прямым антирахитическим фактором, его механизм действия подобен стероидным гормонам [Долгов В. и др., 1995]. После синтеза в почках он транспортируется кровью в кишечник, где в клетках слизистой оболочки стимулирует синтез кальцийсвязывающего протеина, который способен связывать каль-

458

ций, поступающий с пищей (в этом и состоит основная функция витамина D). В результате этих процессов уровень кальция в крови повышается. Продуцирование и секреция 1,25(OH)2D3 регулируются. На его секрецию почками влияет содержание кальция и фосфора в пище. Сам он также действует как регулятор: его избыток ингибирует синтез и секрецию паратгормона. Избыток ионов кальция в крови, вызванный избытком 1,25(OH)2D3, также ингибирует высвобождение паратгормона. Пролактин и соматотропный гормоны являются важными регуляторами метаболизма витамина D во время беременности и роста.

Недостаток 1,25(OH)2D3 приводит к гипокальциемии, остеомаляции и связанным с этим нарушениям. Низкие значения 1,25(OH)2D3 в крови выявляют при рахите, остеопорозе после наступления менопаузы, остеомаляции, гипофункции паращитовидных желез, у подростков при инсулинзависимом сахарном диабете, отравлении витамином D, первичной опухоли или метастазах в кости, ХПН; и совсем не определяется его концентрация после нефрэктомии.

Повышенные значения 1,25(OH)2D3 в крови определяют при первичном гиперпарати-реозе, саркоидозе, туберкулезе, кальцинозе, у нормально растущих детей, беременных и кормящих матерей.

Маркеры метаболизма и резорбции костной ткани

Маркерами метаболизма костной ткани (маркерами формирования костной ткани) являются костный изофермент щелочной фосфатазы, остеокальцин, N- и С-концевые про-пептиды коллагена I типа. Костный изофермент щелочной фосфатазы ассоциируется с активностью остеобластов. Остеокальцин — основной неколлагеновый белок костного матрикса, который синтезируется почти исключительно остеобластами и затем участвует в процессах минерализации. N- и С-концевые пропептиды коллагена I типа циркулируют в крови в виде отдельных цепей. Однако выраженная физиологическая вариабельность ограничивает возможность исследования метаболитов коллагена как в диагностике, так и мониторинге заболеваний с нарушением обмена кальция, тем более что костный изофермент щелочной фосфатазы и остеокальцин обладают большей диагностической чувствительностью.

Основными биохимическими показателями, используемыми в клинической практике в качестве критерия резорбции костной ткани, служат гидроксипролин мочи и пиридиновые связи коллагена. Гидроксипролин мочи отражает разрушение (резорбцию) костной ткани. Однако поскольку гидроксипролин присутствует также в коже и других тканях, его определение относительно неспецифично для оценки резорбции костной ткани. Стабильность кол-лагенового матрикса обеспечивается межмолекулярными необратимыми связями, образующимися между некоторыми аминокислотами, входящими в полипептидную цепь коллагена. Из-за наличия пиридинового кольца перекрестные связи называют пиридинолином (Пид) и дезоксипиридинолином (Дпид). Пиридиновые связи присутствуют только во внеклеточных коллагеновых фибриллах и характерны для дифференцированного матрикса прочных типов соединительной ткани — кости, хряща, дентина. Их не находят в коллагене кожи, мягких тканях, поэтому их исследование более специфично для оценки резорбции костной ткани [Takeuchi S. et al., 1996].

Остеокальцин в сыворотке

Остеокальцин — витамин К-зависимый неколлагеновый белок костной ткани — локализуется преимущественно во внеклеточном матриксе кости и составляет 25 % неколлагено-вого матрикса. Остеокальцин синтезируется зрелыми остеобластами и является индикатором метаболизма костной ткани. Высокий уровень ПТГ в крови оказывает ингибирующее действие на активность остеобластов, продуцирующих остеокальцин, и снижает его содержание в костной ткани и крови. 1,25(OH)2D3 стимулирует синтез остеокальцина в остеобластах и повышает его уровень в крови. Остеокальцин — чувствительный маркер метаболизма костной ткани, причем изменения его концентрации в крови отражают метаболическую активность остеобластов костной ткани. Содержание остеокальцина в крови в норме представлено в табл. 9.46.

459

 ■&й л wл!,* *) Afe.

 оследжэдплцшъ » шпоротке * норме

 

 

Возраст

Остеокальцин, нг/мл

Дети Женщины Мужчины

39,1-90,3 10,7-32,3 14,9-35,3

Рахит у детей раннего возраста сопровождается снижением в крови содержания остеокальцина, степень снижения его концентрации зависит от выраженности рахитического процесса и наиболее выражена при рахите II степени. Содержание остеокальцина в крови детей, больных рахитом, находится в обратной зависимости от концентрации ПТГ и в прямой — с уровнем общего и ионизированного кальция и кальцитонина.

Уровень остеокальцина в крови повышается при болезнях, характеризующихся увеличением костного обмена: болезнь Педжета, первичный гиперпаратиреоз, почечная остеодис-трофия, диффузный токсический зоб [Рожинская Л.Я. и др., 1991].

У больных гиперкортицизмом (болезнь и синдром Иценко—Кушинга) и пациентов, получающих преднизолон, значительно снижено содержание остеокальцина в крови, т.е. имеется тесная зависимость между выраженностью гиперкортицизма и снижением костеобразо-вания, отражением которого является содержание остеокальцина в крови. Успешное лечение этих категорий больных сопровождается повышением концентрации остеокальцина в крови. Уровень остеокальцина у больных гипопаратиреозом низкий.

Общий гидроксипролин в моче

Коллаген — фиброзный протеин. Он обнаружен в костях, сухожилиях, коже, кровеносных сосудах и хрусталике глаза. Коллаген состоит на 33 % из глицина и на 21 % из белка и гидроксипролина. Гидроксипролин составляет около 10 % молекулы коллагена. Различные производные гидроксипролина представляют собой метаболиты коллагена, отражающие в определенной степени процессы фиброгенеза. Определение его выведения с мочой является ценным показателем общего обмена коллагена. У здоровых людей ббльшая часть общего гидроксипролина выделяется с мочой в виде пептидных комплексов и менее 10 % — в свободном виде. Содержание общего гидроксипролина в моче в норме представлено в табл. 9.47.

Таблица 9.47. Содержание общего гидроксипролина в моче в норме

[Тиц Н., 1997]

 

Возраст

Общий гидроксипролин

 

мг/сут

ммоль/сут

1—5 лет

20-65

0,15-0,49

6-10»

35-99

0,27-0,75

11-14»

63-180

0,48-1,37

18-21 год

20-55

0,15-0,42

22—40 лет

15-42

0,11-0,32

41-55»

15-43

0,11-0,33

Экскреция гидроксипролина при врожденном нарушении метаболизма и различных неспецифических аминоацидуриях, обусловленных дистрофией костной ткани, избыточна. Определение оксипролина необходимо для контроля за лечением больных с деструктивными процессами костной ткани (в частности, болезнью Педжета). Повышенное его выделение с мочой наблюдается при акромегалии, гипертиреозе, гиперпаратиреозе (не всегда), болезни Педжета, рахите и остеомаляции, обширных переломах, опухолях костей, остеопорозе, сарко-идозе, тяжелых ожогах, остром остеомиелите, растущих шпорах. Сниженные концентрации гидроксипролина характерны для гипопитуитаризма, гипотиреоза, гипопаратиреоза, недостаточности питания, мышечной дистрофии.

В течение 3 дней перед сбором суточной мочи на исследование общего гидрокси-проли-на пациент должен соблюдать безколлагеновую диету.

460

Пиридинолин (Пид) и дезоксипиридинолин (Дпид) в моче

Пиридиновые перекрестные связи — специфические компоненты зрелого коллагена. Костная ткань является основным источником Пид биологических жидкостей организма. Этот тип связи представлен также в хрящевой ткани, сухожилиях. Однако активный метаболизм костной ткани по сравнению с другими типами соединительной ткани позволяет считать, что определяемый в моче Пид обеспечивается в основном за счет деструктивных процессов физиологического или патологического характера в костях. Содержание Пид и Дпид в моче в норме представлено в табл. 9.48.

Таблица  9.48. Содержание Пид и Дпид в моче в норме [Тиц Н., 1997]

 

Возраст

Пиридинолин, нмоль/ммоль

Дезоксипиридинолин, нмоль/ммоль

 

креатин и на

креатин и на

2—10 лет

160-440

31-110

11-14»

105-400

17-100

15-17»

42-200

<59

Взрослые: мужчины

20-61

4-19

женщины

22-89

4-21

Практически Дпид обнаруживают исключительно в коллагене костной ткани, в которой соотношение Пид/Дпид соответствует 4:1 и сохраняется в моче взрослых, где на долю Дпид приходится 20—22 % общего уровня экскреции пиридиновых связей. При заболеваниях суставов различного генеза соотношение Пид/Дпид в моче увеличивается в отличие от заболеваний, протекающих с деструкцией костной ткани.

Для определения Пид и Дпид рекомендуется исследование второй утренней порции мочи (с 7 до 11 ч).

Исследование Пид и Дпид в моче показано не только для мониторинга активности ре-зорбтивных процессов в костной ткани, но и для оценки эффективности проводимого лечения. Лечение считается эффективным, если экскреция Пид, особенно Дпид, снижается на 25 % в течение 3—6 мес лечения [Любимова Н.В., Peaston R., 1997].

Лабораторные показатели, наиболее специфичные для гипер- и гипопаратиреоза, приведены в табл. 9.49.

 

Таблица 9.49. Лабораторные показатели при гипер- и

гипопаратиреозе

Лабораторный показатель

Гиперпаратиреоз

Гипопаратиреоз

Уровень кальция в крови

т

1

Уровень фосфора в крови

ii , менее 0,7 ммоль/л

т

Щелочная фосфатаза в крови

Tβ 1,5-5,0 раз

н

Кальций в моче

t>10 ммоль/сут

1

ПТГ в крови

tt в 2-20 раз

1

Кальцитонин в крови

t

1

Кальцитриол в крови

t

4

Остеокальцин в крови

tt в 5—20 раз

н

Экскреция оксипролина с мочой

tt

н

Приведенные лабораторные признаки гипопаратиреоза не всегда изменяются так однозначно, возможны другие изменения лабораторных показателей.

Изменения гормональных и биохимических показателей, а также функциональных проб при нарушениях кальций-фосфорного обмена представлены в табл. 9.50.

461

Таблица 9.50. Изменения биохимических показателей и функциональных проб при нарушениях кальций-фосфорного обмена [Шабалов Н.П., 1996]

 

Клинический синдром

Кровь

Моча

ЩФ

О.

н

Ц

ПТГ

кт

ro

Q О

N                '

Тест с ПТГ

 

Са

p

Са

р 

 

 

 

 

 

 

Первичный гиперпаратиреоз

H,t

A

т

т

н,т

1

Т

t

 

 

Вторичный гиперпаратиреоз

4vH

1

н, т

Н, Т

H,t

4-

t

-

t

 

Гипопаратиреоз

I

i

4-

4-

н

Т

4-

4-

t, H

+

Псевдогипопаратиреоз

i

T

1

4-

 

Т

Т

t

t, H

+

Витамин D-дефицитный рахит: кальцийпенический

фосфопенический с нормальными Са и Р

i

H

1

Т

Г

1

t

4-

i

 

 

H

4-

1, Н

f

т

4-

4.

t

 

 

 

H

H

4-, Н

t

t

1

Т

H,t

 

 

Витамин D-зависимый рахит

i

i

н

Т

t

1

t

-

I, H

 

Витамин D-резистентный рахит

H,i

I

н

т

t

1

t

-

H

 

Почечный тубулярный ацидоз

H, 4-

i

Т

т

т

1

t

-

H

 

Гипервитаминоз D

T

T, H

т

t

н

4,

4-

t

t, H

 

Фиброзная остеодистрофия

H

H

н

н

н

 

 

 

 

 

 

 

Обозначение: Н — норма; f — повышено; 4- — снижено.



Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |

Оцените книгу: 1 2 3 4 5

Добавление комментария: