Название: Клиническая оценка результатов лабораторных исследований - Учебное пособие

Жанр: Медицина

Рейтинг:

Просмотров: 1475

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |



ОСНОВЫ ТЕОРИИ НЕНЬЮТОНОВСКИХ ЖИДКОСТЕЙ

Реологическая нелинейность (кривая течения или вязкости не является прямой линией) может возникнуть не только в результате комбинации линейных реологических элементов. Отклонения от линейного закона могут возникнуть даже в пределах одного фундаментального реологического свойства. Так, если речь идет о текучих средах, существует целый класс жидкостей, для которых неприменим закон Ньютона, в том числе и в случае, когда нелинейность реологической кривой обусловлена только переменной вязкостью. Жидкости, принадлежащие к этому классу, называются неньютоновскими. Для неньютоновских жидкостей характерно наличие переменной вязкости, зависящей от скорости деформации. Для этого класса жидкостей коэффициент вязкости уже не является фундаментальной характеристикой вещества.

Наиболее полной и вместе с тем удобной для практического исследования является классификация неньютоновских жидкостей, преложенная J. Wilkinson (1964).

488

Классификация неньютоновских жидкостей [Wilkinson J., 1964, с дополнениями]

1.             Жидкости, для которых характерна определенная зависимость между скоростью де формации и напряжением в определенном месте потока.

1.1.         Пластичные жидкости (вязкопластичные).

Линейно-вязкопластичные жидкости.

Нелинейно-вязкопластичные жидкости.

Псевдопластичные жидкости.

Дилансные жидкости.

2.             Жидкости, для которых зависимость между скоростью деформации и напряжением определяется (в том числе) временем действия напряжения и (или) предысторией жидкости.

Тиксотропные жидкости.

Реонектические жидкости.

3.             Жидкости, обладающие одновременно свойствами твердого тела и жидкости, частич но проявляющие упругое восстановление формы после ликвидации напряжения (вяз- коупругие жидкости).

Жидкости, принадлежащие к 1-й и 3-й группам, могут быть отнесены к реостабильным жидкостям, т.е. таким, реологические характеристики которых не зависят от продолжительности сдвигового течения. Их называют также жидкостями со стационарной реологией.

Реологические особенности линейно-вязкопластичных жидкостей уже рассматривались на примере тела Шведова. Нелинейно-вязкопластичные среды, имеющие прямое отношение к реологии крови, будут рассмотрены на ее примере.

Упруговязкая жидкость является представителем 3-го типа неньютоновских жидкостей. Основными отличиями упруговязкой жидкости от ньютоновской являются следующие. Если в емкость с упруговязкой жидкостью опустить вращающийся стержень, то она как бы «наматывается» на него и поднимается вверх по стержню на определенную высоту (ньютоновская жидкость в такой ситуации просто отбрасывается в стороны под действием центробежных сил). Если такую жидкость поместить между двумя параллельными дисками, в ней возникают напряжения, нормальные (перпендикулярные) плоскостям дисков, которые под действием этих напряжений раздвигаются (ньютоновская жидкость в данном случае просто растекается). Таким образом, при течении упруговязкой жидкости по трубе создается большее по сравнению с ньютоновской жидкостью давление на стенку. И, наконец, ламинарная струя упруговязкой жидкости после выхода из капиллярной трубки утолщается. Сущность этих так называемых эффектов Вейссенберга состоит в возникновении в такой жидкости, помимо касательных, нормальных (перпендикулярных) напряжений. Физическая сущность возникновения нормальных напряжений в упруговязкой жидкости до конца не выяснена.

Из представленных на рис. 10.5 графиков следует, что главной особенностью дилансных и псевдопластичных жидкостей является зависимость вязкости от скорости деформации. Кривые течения этих текучих сред выходят из начала координат. Обычно жидкости с такой кривой течения хорошо описываются степенной функцией. Используя обозначения, принятые в реологии, ее можно записать:

x = к- Г  (14)

где к — показатель консистенции, п — индекс течения.

Заметим, что при п = 1 степенной закон принимает вид закона Ньютона: т = к • у, где параметр к тождествен коэффициенту вязкости.

При 0<п<1 кривая течения соответствует псевдопластичной жидкости и обращена выпуклостью в сторону оси напряжения сдвига (см. рис. 10.5, 6, кривая 2). При перестройке кривой течения в кривую вязкости видно (см. рис. 10.5, а, кривая 2), что у такой жидкости вязкость уменьшается с возрастанием скорости деформации. В настоящее время существуют два классических толкования природы явления псевдопластичности: 1) уменьшение вязкости с ростом скорости деформации является следствием «ориентационного» эффекта; 2) явление переменной вязкости может быть обусловлено наличием сольватных оболочек вокруг отдельных частиц псевдопластичной среды. Оба толкования предполагают наличие у обсуждаемого класса текучих сред определенной структуры. Под структурой в данном случае под-

489

разумевается наличие в материалах (среде) агрегатов и флоккул коллоидных и микроскопических частиц. Таким образом, речь обычно идет о дисперсиях, т. е. текучих системах, состоящих по меньшей мере из двух фаз — дисперсной фазы (взвешенные частицы) и дисперсионной (несущей) фазы. Не останавливаясь подробно на особенностях различных видов дисперсий, охарактеризуем лишь те их параметры, которые наиболее существенны с точки зрения реологии. Дисперсии с размерами частиц дисперсной фазы 0,1 мкм и более принято считать грубодисперсными. К ним, в частности, относятся суспензии и эмульсии. Суспензия — это дисперсная система, в которой дисперсная фаза является твердым веществом, а дисперсионная среда — жидкостью; эмульсия представляет собой взвесь частиц жидкости в жидкой дисперсионной среде. Различают также коллоидные системы. Они имеют размеры частиц дисперсной фазы от 10~9 до 10~" м. Примером коллоидной системы может служить, например, раствор альбумина. Классификация дисперсий предусматривает также молеку-лярно-дисперсные и ионно-дисперсные системы, не имеющие существенного значения для реологических свойств исследуемой среды.

При анализе реологических свойств дисперсных систем важно учитывать, что существенным является лишь ограничение, налагаемое на размеры элементов дисперсной фазы «сверху», которое заключается в том, что они должны быть не больше характерных размеров трубки, по которой течет суспензия. Например, при движении эритроцита размером 10 мкм по сосуду диаметром 20 мкм будут иметь место различные пристеночные эффекты, например проскальзывание. Напротив, в сосуде диаметром 250 мкм этими эффектами уже можно пренебречь.

Наличие у псевдопластичного материала структуры в виде элементов дисперсной среды или ее возникновение в процессе течения приводит к большей кажущейся вязкости вследствие создания агрегатами дополнительного торможения смещению одного слоя среды по отношению к другому. Существенно, что кажущаяся вязкость псевдопластичной жидкости является функцией объема структуры, а не числа частиц, входящих в ее состав [Фукс Г.И., 1951], т.е. при прочих равных условиях рыхлые структуры вызывают более значительное увеличение вязкости, чем компактные с тем же абсолютным количеством частиц.

Элементы указанных сред в случае низких или нулевых скоростей деформации движутся беспорядочно вследствие тепловых броуновских движений. При увеличении градиента скорости у частиц появляется некоторый вращающий момент силы относительно их оси, стремящийся сориентировать эти частицы вдоль направления течения. Таким образом, значительная ньютоновская вязкость обусловлена преобладанием броуновского движения над слабым ориентирующим эффектом течения при малых скоростях деформации. По мере нарастания скорости деформации ориентирующий эффект начинает преобладать. В результате этого процесса наименьшая (ньютоновская) вязкость псевдопластической жидкости при больших скоростях деформации обусловлена максимальной ориентацией частиц и полным подавлением влияния броуновского взаимодействия. Б.М. Смольский и соавт. (1970) указывают, что в этих случаях с увеличением скорости деформации вязкость всегда убывает ввиду того, что движение дисперсионной среды относительно хаотично расположенной дисперсной фазы сопровождается гораздо большими потерями энергии, чем при прохождении через своего рода «решетку» упорядоченно ориентированных частиц.

Второй механизм возникновения псевдопластичности связан с наличием сольватных оболочек на элементах дисперсной фазы: всякая несущая заряд частица (ион, молекула) в растворе окружена сольватной оболочкой из молекул растворителя. Если растворитель — вода, то оболочка называется гидратной, а процесс — гидратацией. Для данного механизма определяющим фактором является прочность связи между сольватной оболочкой и поверхностью дисперсной фазы. До тех пор, пока эта связь настолько прочна, что с увеличением скорости деформации удерживает оболочку на поверхности частицы, вязкость не уменьшается. Однако с увеличением градиента скорости больше определенной величины происходит постепенный отрыв сначала верхних, а затем и более глубоких слоев сольватных оболочек. Частицы дисперсной фазы при этом как бы «освобождаются».

Если учесть, что кажущаяся вязкость псевдопластической среды является функцией объема структуры, то становится понятным, почему описанное явление сопровождается увеличением текучести — наступает уменьшение фактической объемной концентрации дисперсной фазы. Процесс снижения вязкости продолжается до тех пор, пока все сольватные оболочки не разрушатся. Согласно данным Б.М. Смольского и соавт. (1970), обязательное превышение кажущейся вязкости при относительно низких скоростях деформации над вязкостью при достаточно высоких градиентах скорости объясняется тем, что, во-первых, при малых скоростях деформации прохождение дисперсной среды через сольватированные час-

490

Рис. 10.5. Кривые вязкости (а) и течения (б) ньютоновской (1), псевдопластичной (2) и дилансной

жидкостей (3).

тицы «затруднено» более, чем в случае больших скоростей сдвига, и, во-вторых, взаимодействие между частицами более выражено ввиду их больших относительных размеров при низких скоростях деформации. По-видимому, имеют место оба механизма возникновения псевдопластичности.

Реже, чем псевдопластичные, встречаются дилансные среды. Индекс течения п у них больше единицы. Это означает, что вязкость у таких материалов увеличивается с ростом скорости деформации. Кривые течения и вязкости такой среды представлены на рис. 10.5, а, график 3. Явление дилансии впервые обнаружено О. Рейнольдсом. Необходимо различать реологическую и объемную дилансию. Явление реологической дилансии состоит в увеличении вязкости с ростом скорости деформации вследствие увеличения объема дисперсной фазы системы при деформирующем воздействии. Как более общий случай реологической дилансии можно выделить объемную дилансию, при которой увеличение объема дисперсной фазы не сопровождается изменением кажущейся вязкости среды. Общепринятое толкование дилансии заключается в том, что при сдвиге как бы изменяется «упаковка» частиц твердой дисперсной фазы, она становится более «свободной». Это в свою очередь приводит к увеличению относительного объема дисперсной фазы. Возникновение такой своеобразной «пористой» структуры, в которой жидкие элементы дисперсионной среды сочетаются со своего рода элементами «пустоты», и приводит к феномену дилансии.

До сих пор речь шла о текучих средах с так называемой стационарной реологией. К жидкостям с нестационарной реологией относятся такие, которые обладают свойствами тиксотропии и реопексии. Сущность тиксотропии заключается в том, что при течении с постоянной скоростью деформации неньютоновская жидкость со временем становится ньютоновской (подчеркнем, что псевдопластичные и дилансные среды также ведут себя как ньютоновские, но лишь в определенных пределах скоростей деформации). В отличие от псевдопластичных сред, структура которых начинает меняться с ростом скорости деформации постепенно, у тиксотропных сред для этого требуется время.

Явлением, противоположным тиксотропии, является реопексия, или антитиксотропия. Среды, обладающие свойством реопексии, характеризуются тем, что их вязкость увеличивается в результате возникновения течения. В отличие от дилансных сред для изменения структуры реопектической жидкости необходимо, чтобы прошло определенное время после начала воздействия деформаций.

Таким образом, нами кратко рассмотрены все типы неньютоновских жидкостей в соответствии с приведенной выше классификацией, за исключением нелинейно-вязкопластичных жидкостей. Само название этого типа жидкостей говорит о том, что их главной особенностью является сочетание пластичности и вязкости с уклонением кривых течения от линейной

491

формы. У жидкостей типа Шведова—Бингама кривая течения представляет собой прямую линию, которая не проходит через начало координат. Класс нелинейно-вязкопластичных жидкостей имеет наиболее важное практическое значение. Поскольку, как будет показано ниже, большинство охарактеризованных сред можно рассматривать как частный случай нелинейно-вязкопластичных, необходимо остановиться на свойствах последних более детально.

Длительное время в теории и практике реологии широко использовалось уравнение Шведова—Бингама (уравнение 10). Было принято считать, что оно является универсальным для широкого класса реальных вязкопластичных систем. В результате развития инструментальной реологии (реометрии) обнаружилось, что в области низких скоростей деформации кривая течения реальных сред уклоняется от прямой линии. Другими словами, выяснилась несостоятельность модели Шведова—Бингама. Более того, было показано, что если эффекты, связанные с нелинейностью кривой течения в области низких скоростей деформации, не принимать во внимание, то, например, при расчете расхода жидкости при ее течении через трубы можно получить величины, почти на порядок отличающиеся от действительных. Это послужило импульсом для появления вначале различных модификаций модели Шведова— Бингама, а затем и достаточно пестрого набора других оригинальных моделей. Приведем лишь наиболее популярные:

модель Гершеля—Балкли:

 

т = т0 + к ■ у'

(15)

 

(модель получена путем добавления к пределу текучести степенного закона, описывающего поведение псевдопластических и дилансных жидкостей); модель Кессона:

(16)

 = Vt0 + у1ц ■ у ;

модель Шульмана:

(17)

Между тем, несмотря на обилие моделей, ни одна из них не является универсальной для всего спектра скоростей деформации. Наибольшего интереса заслуживает модель Шульмана, которая характерна тем, что из нее выводится ряд других реологических законов. Например, при п = 1 она превращается в модель Шведова, а при п = 2 — в модель Кессона. Однако и модель Шульмана, по мнению самого же автора, не всегда позволяет использовать ее для аппроксимации всей кривой течения реальной жидкости.

Позднее З.П. Шульманом (1976) предложена более обобщенная реологическая модель:

 

т1/п =

vl/in

(18)

 

где п, m — индексы течения.

Эта модель предполагает нелинейность пластичности и вязкости. Она в сущности включает в себя большинство имеющихся реологических уравнений.

Подводя итог, можно сказать, что, во-первых, существует целый класс сред или реологических систем, которые могут быть охарактеризованы как неньютоновские текучие системы (неньютоновские жидкости). Их отличительной чертой является наличие переменной вязкости. Во-вторых, переменная вязкость (в смысле ц/у) может быть обусловлена либо нелинейной зависимостью между текучестью и градиентом скорости (т0 = 0), либо, наоборот, наличием предела текучести (т0 # 0), либо тем и другим вместе. В-третьих, для описания такого рода текучих систем существует несколько реологических уравнений. Наиболее обобщающим из них является уравнение Шульмана (18).

Очевидно, что в зависимости от особенностей конкретной нелинейно-вязкопластичной среды индексы пит должны подбираться индивидуально — применительно к каждому материалу. Чем более строго они будут определены, тем точнее можно будет отразить реологические особенности той или иной жидкости.

Реологические свойства различных текучих систем важны, безусловно, не сами по себе, а главным образом в связи с тем, что они нередко определяют резкие отличия в параметрах течения этих сред. Рассмотрим, как сказываются реологические особенности неньютоновских жидкостей на характеристике расхода потока и профилях скоростей при течении в цилиндрической трубке.

492

 

Рис. 10.6. Поршневая аналогия течения (объяснение в тексте).

 

Обычно для этих целей используется так называемая поршневая аналогия. Рассмотрим отрезок трубки радиусом г и длиной 1. Представим внутри ее цилиндрический элемент жидкости («поршень») радиусом R и длиной L (рис. 10.6). На этот элемент с торцов действуют давления Р, и Р2, разница между которыми ЛР приводит его в равномерное движение (при

Р. * Р2)-

Силы давления F, и F2, действующие на торцы, будут соответственно равны:

F, - nR2   P,

 P2

F2 =

 

Кроме того, на этот элемент действуют силы сопротивления, обусловленные наличием касательных напряжений, действующих по его периметру. Они равны 27iR.Lt. Силы давления и силы сопротивления противоположны по направлению и при равномерном движении равны, т. е. 2tiRLt = 71R2 • АР:

х =

2L

 дР    R • ДР

2tiRL

Таким образом, мы получили функциональную зависимость, связывающую напряжения с геометрией (размерами) трубки. Из полученного уравнения следует, что напряжение, возникающее по периметру цилиндрического элемента, при прочих равных условиях всегда пропорционально перепаду давления в системе.

Проанализируем, какие отличия возникают при таком течении между ньютоновской и неньютоновской жидкостями. В качестве неньютоновской рассмотрим псевдопластичную жидкость, подчиняющуюся степенному закону. В левом столбце будем рассчитывать показатели течения ньютоновской, а в правом — неньютоновской жидкости.

 

Ньютоновская жидкость

Неньютоновская жидкость (псевдопластичная)

 

RAP 2L   '

 

так называемое уравнение равномерного движения

dV     R•ДР

т = туу   =

dR

2L   '

тогда, подставив, получаем:

 

 

 

уравнение Ньютона, затем подставив, получаем:

dV = -

R   ДР-dR

n-2L    •

2Lk

■dR

 

493

Решаем уравнение относительно V и после     Решаем это уравнение относительно V и по- интегрирования получаем:            еле интегрирования получаем:

1   R     1

I ЛР V1   г   "

 

Выразим скорость через расход:

Выразим скорость через расход:

 

 

 

q=

71 ■ АР

JR3dR,

З+1/n

 

 

 

тогда

или, что то же самое:

 

 

 

q =

7tR4AP

8Lti   '

Это соотношение есть не что иное, как закон Пуазейля.

 3n+l

 fRAPV

 

Из приведенных соотношений видно, что в одном из них расход пропорционален ДР в первой степени, а в другом — в степени 1/п, т.е.:

 

Q ~ ДР

Q ~

 

Например, у ньютоновской жидкости расход при увеличении ДР в 2 раза увеличится также вдвое, а у псевдопластичной (при п = '/2) — в 22, т.е. в 4 раза, а при п = 0,1 — в 210, т.е. в 1000 раз.

 

ДР ~

R3

(19)

 

где D = 2R.

Это означает, что при прочих равных условиях малейшее изменение D резко сказывается на ДР в системе.

У псевдопластичных жидкостей п близко к нулю, поэтому ДР пропорционально D не в четвертой степени, как в уравнении Пуазейля, а в первой степени, кроме того, в этом случае ДР ~ Q". Это означает, что перепад давления ДР в системе, по которой течет псевдопластичная жидкость, не так сильно чувствителен к расходу и диаметру, как в случае с ньютоновской жидкостью.

Наличие у текучей среды неньютоновских свойств имеет огромное практическое значение, если речь идет о циркуляции такой среды в системе с определенным функциональным назначением. Профили скоростей неньютоновских жидкостей при их течении по трубе представлены на рис. 10.7.

После некоторых математических преобразований можно получить выражение для расчета максимальной скорости течения по трубе:

 

v     = v

v max         "

 

где V — средняя скорость; R — радиус трубы; г — расстояние между слоями_жидкости.

Для ньютоновской жидкости n=1, тогда Vmax = 2V (1 - r2/R2), a V,nax/V = 2,0, т.е. V = 0,5 Vinax. Таким образом, для ньютоновских жидкостей типичен параболический закон распределения скоростей (см. рис. 10.7, эпюр 3).

Для псевдопластичной жидкости с п, равным, например, 0,5, V = 0,6 Vmax.

Наиболее характерной особенностью профиля скорости многих неньютоновских жидкостей служит появление так называемой квазистержневой зоны. Как следует из графиков на рис. 10.7, уменьшение индекса течения п неньютоновских жидкостей приводит к расширению квазистержневой зоны, т.е. профили скоростей становятся как бы более заполненными, а максимальная скорость уменьшается.

494

2,0     -

1,0

R/Ro

 

 

 

1,0      0,6

0,2

0

0,2

0,6

1,0

 

Рис. 10.7. Профили скоростей различных сред.

1 — предельно дилансный материал (п = a>); 2 — дилансная жидкость (n>1);

3 — ньютоновская жидкость (n=1); 4 — псевдопластичная жидкость (n<1);

5 — предельно псевдопластичный материал.

 

 



Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 |

Оцените книгу: 1 2 3 4 5

Добавление комментария: