Название: Аритмии сердца - М.С. Кушаковский

Жанр: Медицина

Рейтинг:

Просмотров: 1531

Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 |



ПОВТОРНЫЙ ВХОД ИМПУЛЬСА (RE-ENTRY) И ЕГО КРУГОВОЕ ДВИЖЕНИЕ (CIRCUS MOVEMENT)

Как возможный механизм сердечных аритмий re-entry было распознано еще в начале XX в. [Мауег А., 1906, 1908; Mines G., 1913, 1914; Car-rey W., 1914]. Этим термином обозначают явление, при котором импульс, совершающий движение по замкнутому пути (петле, кругу, кольцу), возвращается к месту своего возникновения и повторяет движение (рис. 12). Фундаментальное изучение re-entry было предпринято F. Schmitt, J. Erlanger (1928) в уже упоминавшихся нами опытах с мышечной полоской из желудочка черепахи, подвергнутой воздействию давления, холода или раствора с высокой концентрацией ионов К+. Авторы, в частности, предположили, что избыток ионов К 1~ в наружной среде вызывает продольное разделение мышцы на два пути с антероградной блокадой проведения по одному из них. Искусственный стимул распространяется аптероградно по другому пути, а затем ретроградно продвигается по ранее блокированному пути к месту стимуляции. Это было первое четкое упоминание о возможности однонаправленного блокирования. Схемы повторного входа, предложенные исследователями для разветвленного и неразветвленного волокна, воспроизводятся с небольшими изменениями на рис. 13.

F. Schmitt, J. Erlanger (1928) указали также, что аналогичный процесс циркуляции может возникать в серд-

 

 

Рис. 13. Оригинальные схемы re-entry, пред-     Рис. 14. Схема re-entry вокруг анатомиче- ставленныо F. Schmitt, J. Erlanger (1928)      ского препятствия: macrore-entry no M. Al l-повторный вход в разветвленных мышечных        lessie (объяснение в тексте), волокнах; II—повторный вход в синцитиальной структуре мышечной полоски.

 

це млекопитающих в очень небольших петлях, т. е. в форме microre-en-try. В экспериментальных работах, выполненных в 70-х годах, эта гипотеза получила подтверждение [Crane-field P., Hoffman В., 1971; Crane-field P. et al., 1971; Wit A. el al., 1972; Sasyniuk В., Mendez С., 1973]. Например, вызванное концентрированным раствором ионов К+ торможение скорости проведения в волокнах Пуркинье собаки до 0,01—0,1 м/с и укорочение в них периода рефрак-терности сопровождаются уменьшением кольцевого пути повторного входа до очень небольших размеров (^1 мм). Длина волны возбуждения, равная произведению из скорости проведения на длительность рефрактерности, соответствует величине такой минимальной петли reentry.

Современные представления о reentry усложнились, но они по-прежнему основываются на классических данных. Различают: a) macrore-entry (макрориентри), или упорядоченное

(ordered) re-entry; б) microre-entry (микрориентри), или «случайное» (random) re-entry. Разумеется, при таком делении учитывают размеры петли (круга), в которой осуществляется повторный вход. Однако не меньшее значение имеют электрофизиологические особенности каждого из этих двух подвидов re-entry. Мы приводим их описание, основываясь на результатах известных экспериментальных исследований М. Allessie и сотр. (1974—1984).

Для формирования macrore-entry с характерными для него свойствами требуются определенные условия:

а) наличие устойчивой замкнутой петли, длина которой зависит от периметра анатомического невозбудимого препятствия, вокруг которого движется импульс (рис. 14);

б) однонаправленная блокада проведения в одном из сегментов петли re-entry [Quan W., Rudy Y., 1990];

в) длина движущейся волны возбуждения должна быть короче длины петли; благодаря этому перед

фронтом («головой») распространяющегося по кругу импульса всегда имеется участок ткани, вышедший из состояния рефрактерности и восстановивший свою возбудимость; этот сегмент, или «окно возбудимости», имеет протяженность до 20% длины всей петли. Именно в этот «зазор» стараются попасть, нанося экстрастимулы, чтобы прервать круговое движение импульса при реципрокных тахикардиях. Укорочение рефракторного периода клеток, образующих петлю, способствует расширению «окна возбудимости», но оно не оказывает влияния на скорость распространения импульса и частоту ритма. Умеренное удлинение периода рефрактерности суживает «окно возбудимости» тоже без воздействия на скорость движения импульса по петле и на частоту ритма. При значительном удлинении рефрактерности «окно возбудимости» может закрыться, циркулирующая волна наталкивается на участок, находящийся в состоянии функциональной рефрактерности; движение импульса резко замедляется либо прекращается [Feld G. et al., 1986]. Описанный механизм mucrore-entry лежит, как полагают, в основе трепетания предсердий, а также некоторых форм реци-прокной тахикардии [Медвинский А. Б., Перцов А. М., 1989].

При другой разновидности повторного входа — microre-entry — движение импульса происходит по малому замкнутому кольцу, не связанному с каким-либо анатомическим препятствием. Теоретическое обоснование этому процессу было дано еще Th. Lewis (1925). М. Allessie и соавт. производили картографирование левого предсердия кролика в тот момент, когда с помощью электрического экстрастимула была вызвана пред-сердная тахикардия с частотой от 400 до 800 в 1 мин. Регистрацию возбуждения в различных участках предсердия производили как по его периметру, так и по радиусу. Можно было видеть, что импульс совершал не только круговое, но и цептростреми-

 

Рис. 15. Схема re-entry no малому кругу, не связанному с анатомическим препятствием — leading circle no M. Allessie (объяснения в тексте).

тельное движение в разных направлениях. По мере приближения к центру амплитуда и скорость подъема фазы О ПД понижались, и возбуждение затухало. Клетки в центре циркулировавшей волны давали только локальный электрический ответ, поскольку они поддерживались в рефракторном состоянии под воздействием поступавших с разных сторон импульсов. Место схождения этих импульсов служило функциональной основой для циркуляции волны возбуждения. Оно как бы заменяло анатомическое препятствие и защищало возбуждение от шунтирования (рис. 15).

Такое явление можно сравнить с водоворотом и воронкой в его центре. М. Allessie и соавт. (1977, 1980) назвали эту движущуюся, вращающуюся систему термином leading circle (leading circuit), т.е. «ведущий кружок» (цикл), или ведущая петля microre-entry, которая и определяет частоту возбуждения миокарда предсердий.

В предсердиях может быть несколько таких кругов, и самый меньший из них оказывается ведущим, так как в круге с наименьшим диаметром будет и самое короткое время обращения волны возбуждения. При столь малых размерах круга стимулирующий эффект движущейся волны оказывается достаточным, чтобы возбудить лежащий впереди участок миокарда, еще не вышедший из состояния функциональной рефрактерности. Другими словами, в кольце microre-entry нет «окна», т. е. зоны полностью восстановленной возбудимости; «голова» волны непосредственно следует за ее «хвостом». Длина ведущего круга оказывается равной длине волны возбуждения.

 

36

 

Рис. 16. Схема сложного многокольцевого re-entry в зоне инфаркта миокарда (по N. El-Sherii' и соавт.).

 

Ниже суммированы основные свойства leading circle:

а) размеры ведущего круга не являются фиксированными, они определяются длиной волны возбуждения, которая, в свою очередь, зависит от длительности функционального рефрактерного периода (ФРП) мышечной ткани и от скорости проведения в ней импульса; укорочение ФРП или замедление скорости проведения ведет к сужению (уменьшению) ведущего круга; когда же ФРП удлиняется, а скорость проведения возрастает, ведущий круг увеличивается в размерах; как видно, активность малого круга детерминируется не его длиной, а электрофизиологическими свойствами мышечных волокон, образующих этот круг;

б) в ведущем круге отсутствует участок, полностью восстановивший свою возбудимость; воздействовать на такой круг можно только с помощью стимула, сила которого значительно превышает диастолический порог возбуждения миокарда;

в) частота ритма, вырабатываемого в ведущем круге, обратно пропорциональна длительности ФРП: при его укорочении число импульсов в единицу времени возрастает.

Необходимо упомянуть еще об одном механизме — re-entry в неразветвленном волокне. Речь идет об {(отраженном повторном входе-,) (reflected re-entry). Развивающие эту

концепцию J. Jalife, G. Мое (1981), С. Antzelevitch и соавт. (1985) разработали экспериментальную модель, основу которой составляет электрото-нически опосредованное замедление проводимости. В неразветвленном волокне Пуркинье создается узкая зона (2 мм) функциональной невозбудимости, через которую осуществляется медленное элсктротоническое движение импульса от проксималь-ного к дистальному участку волокна. Если время этого антероградного движения велико, то создаются условия для электротоничсского тока в ретроградном направлении с повторным возбуждением проксимального участка волокна, вышедшего из состояния рефрактерности. Таким образом, импульс движется вперед и назад через один и тот же функционально блокированный сегмент благодаря электротонической передаче, а не вследствие продольного разделения волокна на 2 канала, как предусматривается в более старых моделях.

По-видимому, многие сложные та-хиаритмии, в частности фибрилля-ции, связаны с механизмами microre-entry. Сочетания (иногда весьма причудливые) неправильных петель reentry, лежащих в разных плоскостях, возникают у больных с желудочковыми тахикардиями в остром периоде инфаркта миокарда [Перцов А. М., Фаст В. Г., 1987; El-Sherif N. et al., 1983] (рис. 16).



Страница: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 |

Оцените книгу: 1 2 3 4 5

Добавление комментария: